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A kinetic lattice-gas model for the triangular lattice with 
strong dynamic correlations: I. Self-diffusion 
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Fakuitiit fiir Physik, WniversiBt Konstanz, Postfach 5560 M679, D-78434 Konstanz, " a n y  

Received 5 April 1994, m final form 5 July 1994 

AbsvaeL Self-diffusion in a lattice-gas model with two-vacancy assisted hopping on the 
eiangular lattice is investigated, by both Monte Carlo simulation and analythd calculation. A 
very rapid decrease of the tracerarrelation factor and marked size effece in finite laltica give 
evidence for Swng dynamic correlations in both space and time at high particle concentration. 
Although the decrease of the self-dihion coefficient over 3.5 decades for concentrations up 
to c = 0.77 is best fitted by a power law (0.835 - c)3,54, it is w e d  that the model dces 
not have a sharp dynamical phase transition with a critical concentration lower than one. The 
argument is based on a p m f  of absence of permanently blocked panicles in infinite lattices 
at all concentrations Mow one. The self-diffusion coefficient is calculated analytically within 
a pair approximation which gives good results for lower wncenwtims, but fails at Lhe highex 
concentrations. The approximation is in qualitative agreement with the Monte Carlo data far 
the hater-correlation factor at all concentrations for a variant of the model with one-vacancy 
assisted hopping, in which the dynamic conelations are less pronounced. 

1. Introduction 

It is commonly accepted that the non-vibrational motions of molecules in supercooled 
liquids develop strong dynamic correlations in space and time, before t h i s  type of motion 
is arrested at the glass transition. Diffusion models with the simplified geometry of a 
lattice are amactive for studying such correlations and their observable consequences. In 
the past several models of this kind have been investigated: the hard-rod lattice gas [I], the 
hard-square lattice gas [2-8], and, most recently, the lattice gas with four-vacancy assisted 
hopping on the simple cubic lattice [9]. The model presented here has the advantage of 
relative simplicity, which makes it suitable for a test of several established approximation 
schemes of analytical theory. The pair approximation, which is successful for simple lattice 
gases without further kinetic constraint [IO, 111, is applied to the calculation of the self- 
diffusion coefficient. Application of a mode-conpling approximation is deferred to paper U 
[17], which deals with properties of collective diffusion rather than selfdiffusion. 

After the model is introduced in section 2, 
Monte Carlo results for quantities characterizing self-diffusion, such as the mean quare 
displacement, incoherent intermediate scattering function, self-diffusion coefficient and 
tracer-correlation factor, are presented in section 3. In section 4 it is shown that permanently 
blocked particles do not exist in the thermodynamic limit of infinite lattice size. Section 5 
contains the analytical calculation of the self-diffusion coefficient. A two-dimensional and 
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a three-dimensional variant of the model are @sited in section 6. Section I is concerned 
with size effects in diffusion and the characteristic length related to these, and a summary 
is given in section 8. 

J Jiickle and A Kronig 

2. The model 

The model is a lattice gas on the two-dimensional triangular lattice with two-vacancy assisted 
diffusion dynamics. A lattice site can be occupied only by one particle at a time. There is 
no interaction potential between different particles. In equilibrium at concentration c every 
lattice site is occupied by a particle with probability c, independent of the occupation of 
other sites. Therefore there are no static correlations. A particle can jump to an empty 
nearest-neighbour site only under the condition that the two sites on either side of the jump 
path are vacant (figure 1). This is the kinetic constraint in the model. For a jump from site 
i to i C6, where 6 is one of the six nearest-neighbour vectors, we denote these two sites by 
i + o(6) and i +U@) (see section 4). The attempt frequency I* for the jump of a particle to 
a nearest-neighbour site is set equal to one. Jumps to more distant sites are not considered. 

Figure 1. The kinetic constraint for a particle on the hiangular lattice to jump from site i to 
a ne-t-neighbour site i + S. The circles (full line for the panicle and dashed lies for the 
vacancies) illustrate the geomekic interpretation of the mnstraint (see text). 

This model is designed as a model for cooperative dynamics rather than for a concrete 
physical system, l i e  hydrogen in metals [12,13]. The kind of cooperativity we have in 
mind is thought to occur in the slow diffusive molecular motion in supercooled liquids near 
the glass transition [14]. A characteristic feature of such cooperativity is that neither a 
single vacancy nor any complex of vacancies can propagate through a full lattice without 
the assistance of additional vacancies. If particles are arranged in a straight line, with no 
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vacant sites in between, they block each other mutually. In lattices of finite size, such lines 
may form ‘cages’ of permanently blocked particles (section 6). As shown below (section 2), 
the diffusion process slows down extremely quicMy at higher particle concentrations, which 
is in qualitative accord with the behaviour of supercooled liquids. The model shares the 
properties of cooperativity with the hard-square lattice gas [4,5,7], but is simpler to handle, 
both by computer simulation and analytically, due to its lack of static correlations. 

Although the model is not claimed to represent a concrete physical system, it is of 
interest to note that its kinetic constraint has a geometric interpretation. On a triangular 
lattice with lattice constant a all sites may be occupied randomly by hard-disc particles with 
a diameter d < a. However, if it is assumed that the centres of the particles can move 
only along the edges of the triangular lattice, the jump of a particle to an empty neaxest- 
neighbour site is subject to a condition if the disc diameter d is larger than the critical value 
of ( A / Z ) a .  The condition is that both sites adjacent to the jump path are vacant, which is 
the kinetic constraint of our model. 

Several variants of the model are described in section 5. 

3. Results of Monte Carlo simulation 

We first present the results of Monte Carlo simulation for two quantities characterizing self- 
diffusion: the mean square displacement  AT)^)^ and the incoherent intermediate scattering 
function F,(k, t). The latter is the characteristic function of the displacement AT@) of a 
particle during a time interval of length t ,  and is defined by 

F.(k, t) = (exp(ik. AT))?. 

Figure 2 is a log-log plot of the ratio ((Ar)*), / t  against time for different concentrations. 
The long-time l i i i t  of this ratio determines the self-diffusion coefficient D,, namely 

lim ( ( A r f ) , / f  = 40,. 
,+m 

For arbitrary times, the ratio may be interpreted analogously in terms of a time-dependent 
coefficient of self-diffusion D&). While at low concentrations the difference between the 
short-time and the long-time diffusion coefficient is small, and the transition between them 
occurs in a relatively short time region, at higher concentrations this difference becomes 
very large, and the transition region extends to very long times. At c = 0.8 (lowest curve in 
figure 2) the long-time l i i i t  is not reached within the length of our MC runs of lo6 MC steps 
per particle. This qualitative behaviour of the curves shown in figure 2 can be ascribed [15] 
to an increasing degree of backward correlation of jump directions with increasing particle 
density. The ratio between the short-time and the Long-time limit of 0&), which defines 
the tracer-correlation factor fs, is considered below (section 5). 

Figure 3 shows two different fits of our Monte Carlo data for the concentration-dependent 
self-diffusion coefficient DS(c). Surprisingly, the data can be fitted almost equally well by 
two very different formulae: the power-law formula 

&(c) = A(0.835 - c)” (3) 

with coefficient A = 2.26 and exponent v = 3.54, and the exponential formula 

DS = Bexp[-a/(l -c)] (4) 
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Figure 2. Mean square displacement divided by the time for panicle concentrations c = 0.2, 
0.3, 0.4, 0.5. 0.6, 0.65, 0.7, 0.75, 0.77 and 0.8 (from the top). 

1 

lo-' 

D. 

10-3 

10-4 

0.835 - e  

1 
1 - c  
- 

Figure 3. 
wncentration. The straight lines m the fits equations (3) and (4). 

WO different plots of the self-diffusion weffrcient as a function of particle 
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with coefficients B = 6.05 and a = 2.44. The first fit, which is slightly better than the 
second one, extrapolates to a vanishing self-diffusion coefficient at a critical concentration 
c* = 0.835. On the other hand, extrapolation using the second formula predicts the self- 
diffusion coefficient to vanish only at c = 1, though with an essential singularity. In the 
following we argue that the self-diffusion coefficient for an infinite lattice should be positive 
at any concentration c < 1. Accordingly, for an extrapolation of D&) outside the range 
of the Monte Carlo data the second fit is to be preferred. We do not expect, however, that 
the fit (4) is the asymptotic concentration dependence of 4 ( c )  for c -+ 1. Experience 
from the calculation of the characteristic length (subsection 7.2) leads us to expect that the 
asymptotic formula may onIy hold at concentrations far beyond the range of our Monte 
Carlo data for the self-diffusion coefficient. 

Regarding the surprising indif'ference of our D&) data to fits by two very different 
expressions, we note that even close to the singularity at x = 0 the function y = exp(-l/x) 
can be approximated well by power laws (x -.TO)' in limited x intervals. This is due to the 
fact that y(x) for x =- xo and any xo 0, if plotted against (x - XO) in doubly logarithmic 
form, yields a curve with an idection point at x = 2x0, near which it is well approximated 
by a straight lie. One can show, e.g., that for the interval 1.25~0 < x < 5x0 a power law 
(x - XO)" with exponent v = 0.229/xo approximates y ( x )  in a log-log plot to within 2.5% 
of its total variation in this plot, which amounts to (Y = 0.276/xo decades. Therefore, close 
to the singularity at x = 0, the variation of y(x )  over several decades within an x interval 
spanning a factor of four can be well approximated by a power law proportional to (x  -.TO)" 
on a doubly logarithmic plot. This relation between the seemingly different functions (3) 
and (4) explains why it is possible for our D&) data to be fitted by either of them. 

We point out that this ambiguity of fitting is not a peculiarity of the selfdiffusion 
coefficient of our model. A parallel can be drawn to the observed temperature dependence 
of the shear viscosity of real fluids. According to [16], for a wide variety of fluids in 
the low-viscosity regime, both above and below the melting point, a power law fits the 
increase of the shear viscosity with decreasing temperature equally well as or better than 
the Arrhenius or Vogel-Fnlcher formulae. The Arrhenius and Vogel-Fulcher formulae are 
to be compared with our exponential formula (4), from which they can be obtained if a 
linear temperature dependence of the concentration due to thermal expansion is assumed 
for the lattice gas. The viscosity data were found to follow a power law over one or two 
decades only, whereas our data cover 3; decades of the self-diffusion coefficient. However, 
compared with a total increase of the viscosity towards the glass transition by about t h i n  
decades, even this corresponds only to incipient freezing. We conclude that the situation 
concerning the concentration dependence of the self-diffusion coefficient of our model is 
analogous to that encountered for the incipient increase with decreasing temperature of the 
shear viscosity of real fluids. 

Finally, some of our Monte Carlo results for the incoherent intermediate scattering 
function F,(k, t) are presented. Figure 4 shows a timescaled semi-logarithmic plot of 
F,(h, t )  for different concentrations c for one particular wavevector h, which corresponds 
to ffi = (n.0). (For the relation between h and f f i  see section 5, equation (18).) The 
scaliig time t ( c )  is determined by the decay of the scattering function from 1 to l/e. 
According to figure 5, it increases very rapidly with increasing particle density. The time 
dependence of F&, t) is nearly exponential at the lowest concentrations shown. For higher 
concentrations it becomes more and more stretched exponential. A limiting scaled form of 
the time dependence at high concentrations is not found in the c range investigated. Neither 
is there an indication of a two-stage behaviour in the decay of the scattering function. We 
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Figure 4. Incoherent intermediate scattering function F&, 1) for (E = (R. 0) against scaled time 
Z / T  at conoenbations c = 0.2.0.3.0.4, 0.5.0.6,0.7 and 0.75 (f" light Io leA in the upper 
part of Le figure). 

anticipate, however, that for the coherent intermediate scattering function of our model 
two-stage decay is observed at high concentration and for large wavevector [17]. 

4. Absence of permanently blocked particles in the thermodynamic limit 

Our argument for a non-zero coefficient of self-diffusion at all concentrations lower than 
one is based on the absence of permanently blocked particles in the thermodynamic limit. 
By this we mean that, if the lattice is sufficiently large, there is always a way of making an 
initially blocked particle able to jump. With increasing particle concentration the required 
process of letting other particles jump 6rst becomes longer and longer and more and more 
cumbersome. The fact that it is kinetically always possible to make any particle jump, of 
course, does not prove that normal diffusion with non-zero selfdiffusion coefficient persists 
at all concentrations lower than one. It would be possible that above a certain critical 
concentration smaller than one self-diffusion is anomalous in the sense that the long-time 
l i t  (2) is zero. However, we think it is most likely that the trend of the concentration 
dependence of self-diffusion shown in figure 2 continues to higher concentrations without 
any qualitative change: we expect the intermediatetime region, in which the mean square 
displacement grows sublinearly, to become more and more extended, so that at very high 
concentrations self-diffusion practically is anomalous, although the mathematical infinite 
time l i t  (2) still is not zero. A similar situation is met for the hard-square lattice gas and, 
with relaxation by single-spin flips, for the two-spin facilitated kinetic Ising model [18,19]. 
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Flgure 6. Growth of a hexagonal ring of vacancies. 
The mows indicate the first of B sequence of particle 
jumps by which the outer ring is vacated. 

Figure 7. Comparison of MOnfe Carlo data (full line) 
with the result of an analytical calculation (dashed line) 
for the tracer-conelation factor. The pair of uppr 
curves is obtained for the modified model with one 
vacancy assisted hopping (subsection 6.1). 

Solving (5 )  numerically, one finds the asymptotic formula for E -+ 0 

pm - exp(-9.870/~) (7) 

which has the same functional form as (6), hut the coefficient in the exponent is 20% larger. 
The convergence of p, to a non-zero limit pm implies that the growth process continues to 
infinity almost with certainty once the ring of vacancies has reached a certain critical size 
of order E - ' ,  Since in an infinite lattice there are infinitely many independent attempts of 
growth to this critical size, at least one of them is successful with certainty. A rigorous 
formulation of this second part of the proof requires some care and is not undertaken here. 
We refer to the analogous case for the hard-square lattice gas [7]. 

5. Calculation of the self-diffusion coefficient in a pair approximation 

We calculate the self-diffusion coefficient D, for our model in a pair approximation, which 
describes the motion of the tracer particle and a vacancy. If applied to self-diffusion in 
the simple lattice gas, where additional vacancies are not required for a particle to jump, 
this approximation yields the exact result for Ds(c) asymptotically for c + 1 [21] and is 
equivalent to the treatment of this problem by Tahir-Kheli and Elliott [IO, 111. 

5.1, Method of calculation 

D, is derived from the space- and time-dependent tracer correlation function Si(t), which 
is defined as 

S;(t) = WPO(O)P,(t)) (8) 

where p ; ( t )  is the occupation number for the occupation of site i by the tracer particle 
at time f, and 0 is the number of sites of the finite lattice. The brackets (. . .) denote 
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the average over an equilibrium ensemble. At the same time, &(t) is also the conditional 
probability that the tracer particle is at site i at some time t > 0 if it bas been at the origin 
at time zero. The self-diffusion coefficient is obtained from the Fourier-Laplace transform 
of this function, defined by 

as 

To explain the meaning of n(i) and k ( ~ )  in the above expressions, we first need to recall 
some properties of the triangular lattice and its reciprocal lattice. 

So far lattice vectors have simply been denoted by i. The position vector ~ ( i )  of a site 
of the triangular lattice (which will have a lattice constant of one) is a linear combination 
of the basis vectors 

a1=(1 .0)  a z = i ( l , & )  (11) 

with integers nl ( i )  and nz(i):  

The last equation defines a mapping r(n) of the square lattice (with lattice constant one) on 
the triangular lattice. The six shortest non-zero vectors of the triangular lattice, which mark 
the six nearest neighbours to the origin, are obtained as ~ ( 6 )  for the six integer vectors 

61 = (1,O) & = ( O , l )  63 = (-1.1) 

64 = (-1.0) 65 = (0, -1) 66 = (1, -1). 
(13) 

The inverse of equation (12), which maps the hiangular lattice on the square lattice, reads 

where T = ( X I .  xz).  and 

are the basis vectors of the reciprocal lattice. Taking advantage of the mapping (12), spatial 
Fourier transform of functions on the triangular lattice can be conveniently performed on 
the square lattice: 

The inverse transformation reads 
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where the integration over ~1 and KZ extends from --x to +x. The wavevector k reciprocal 
to the position vector T on the triangular lattice is given in terms of K by 

J Jirckle and A Kronig 

from which the relation 

k . T = l c - n  (19) 

follows. The square of k(~), which occurs in formula (IO), is obtained as 

To obtain a formal scheme of calculation, the tracer correlation function &(t)  is 
expressed as a scalar product of the two factors PO and pi@) .  The general definition 
of the scalar product is as follows. A set of occupation numbers ni for all lattice sites, for 
occupation by any particle, together with the site occupied by the tracer particle defines a 
state o. For two functions A and B of this state the scalar product is defined as 

where &(U) is the equilibrium probability of state o. (In the absence of a potential energy, 
po(o) depends only on the total number of particles in the state.) With normalized tracer 
occupation numbers 

Ai = &pi (22) 

SO) = (Ao, Ai@)) .  (23) 

the tracer correlation function can now be written as 

The time dependence of the factor Ai@) in this expression is generated by an operator L', 
which is the Hermitian adjoint of the Liouville operator defined by the Master equation for 
our model. The expression for A&) reads 

Ai(t)  = exp(L+t)Ai. (24) 

The operator L+ acts on any state function A ( o )  as 

The sum on the M.9 (including the factor f )  extends over all pairs of nearest-neighbour 
sites (i, i + 6). dS) is the state obtained from o by interchanging the occupation of these 
sites. The rate wi.8 of this interchange (with an attempt frequency of one) is given by 

wi.du) = (1 - nini+d(l-  ni*(q)(l- ni+u(s)) (26) 
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where for the six nearest-neighbour vectors 6, (a = 1, . . . , 6) o(6,) and U@,) are defined 
as 

 SI) = Sz U(&) = 81 and cyclic permutation. (27) 

The first factor on the RHS of (26) forbids the simultaneous occupation of the two sites i and 
i + 6, between which a particle jump occurs. (This factor cancels in the case of collective 
diffusion where no particle is marked.) The second and third factors express the condition 
that the two sites on either side of the jump path must be vacant. 

We evaluate (23) within a subspace of state functions in which the motion of a tracer- 
particle-vacancy pair can be described. This subspace is spanned by the orthonormal set of 
functions Ai and BP, where B: is defined by 

with An = n  -c .  

5.2. Equations of motion 
From the matrix elements of L+ for Ai and B: one obtains the equations of motion for the 
coupled correlation functions Si@) and S t ( f ) ,  the latter of which is defined as 

S f ( t )  = (Ao, BP(t)) .  (29) 

The first of these equations reads 

Otherwise, for A # 6, the simpler equation 
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holds. Quations (30H32) may be solved by Fourier-Laplace transformation. For lack of 
space, further details of the calculation are omitted. We proceed to give the result for the 
long-wavelength limit of $K, s) (equation (9)), from which the self-diffusion coefficient 
D,(c) is obtained via equation (10). The results read 

J Jackle and A Kronig 

3 1 2 c ( l - ~ ) ~ , 9 ( s ) k ~ ( r c )  
("(K -+ 0, = s + -(1 - c)2k2(lc) + 

2 1 -2(2 -5c)( l  -c)2@(s) 

with 

and 

8ca 
2 - c - 2(2 - 5c)a 

(33) 

(35) 

with 

It is known that a equals the average (cos0) over the angle B between the directions of 
two successive jumps of the tracer particle for unconstrained hopping in the limit of high 
concentration c + 1. For the triangular lattice its value is a = 0.282. The factor outside 
the brackets on the RHs of (35) is the short-time limit of the time-dependent self-diffusion 
coefficient, which for the triangular lattice is given by $F, in terms of the average rate 
r = (1 - c ) ~  of the jump of the tracer particle in a particular jump direction. (We set 
both the jump attempt frequency and the lattice constant equal to one.) The expression in 
the brackets on the RHS of (35) is the tracer-correlation factor fs. The analytical result for 
f&) contained in equation (35) is compared with the Monte Carlo data for this quantity 
in figure I. For lower concentrations up to about c = 0.2 the agreement is very good. 
However, for concentrations higher than c = 0.5 the Monte Carlo data go to zero very 
rapidly, whereas the approximate result tends to a non-zero l i t  for c = 1, which is given 

- 

by 

1-20! 
1 f 6 a  

f& = 1) = - - - 0.162. (37) 

Obviously the analytical approximation is insufficient for the higher concentrations where 
self-diffusion is a highly cooperative process. 

6. Related models 

We consider two closely related lattice-gas models, one for the same triangular lattice, 
but with a weaker kinetic constraint, and one for the facecentred cubic lattice. For the 
first of these we calculated the self-diffusion coefficient as before. For the second, three 
dimensional case only a qualitative comparison with other models is made. 
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6.1. One-vacancy assisted hopping on the triangular lattice 

For the model we investigated so far, a natural question to ask concerns the importance 
of the condition that both sites adjacent to a jump path are empty. What ..difference does 
it make if this condition is relieved and only one vacancy next to the path of a jumping 
particle is required? To answer this question we also considered the modified latticegas 
model with one-vacancy assisted hopping. 

One can see immediately that this small modification of the original model changes 
its properties of diffusion in a fundamental way. For one-vacancy assisted hopping on the 
hiangular lattice a vacancy can rotate around another vacancy on its nearest-neighbour sites, 
so that a pair of nearest-neighbour vacancies can propagate by successive rotations through 
an otherwise full lattice. If there is at least one pair of nearest-neighbour vacancies on 
a lattice, neither permanently blocked particles nor cages exist. Therefore the dynamics 
of the model is not cooperative in the sense described in section 2. One expects that at 
high concentrations (c + 1) self-diffusion is governed by the interaction of one pair of 
nearest-neighbour vacancies with the tracer particle, as it is by the interaction between the 
tracer particle and a single vacancy in the case of the ‘simple’ lattice gas, in which only the 
multiple occupancy of sites is forbidden [lo, 111. 

These general arguments are borne out both by the Monte Carlo calculation and by 
an approximate analytical calculation of the tracer-correlation factor. The tracer-correlation 
factor is again defined by 

f s  = W(qq (38) 

is now T = (1 - c)(l - c’), corresponding to the where the average jump frequency 
expression for the jump rate 

wi.8 = (1 - nini+s) (1 - nito(s) nitu(s)) (39) 

instead of (26). Figure. 7 also contains the Monte Carlo results for the tracer-correlation 
factor &(c) for the modified model. In contrast to the results for two-vacancy assisted 
hopping here the correlation factor goes to a non-zero l i t  at c = 1. The analytical 
approximation as before is an evaluation of the long-wavelength limit of the tracer 
correlation function (9) in the subspace of state functions Ai (equation (22)) and B p  
(equation (28)). The result obtained for the tracer-correlation factor reads 

2c(l + 2c)ZcY 

(1 -t c)2(2 - c) - 2(1 + c)(l + c - 59)E &(c) = 1 - 

which for c = 1 goes to the limit 

3 I - -a  
l + 3 a  

&(c = 1) = 2 - - 0.312. 

This result is shown by the upper dashed line in figure 7. There is qualitative agreement with 
the Monte Carlo data, with a maximum difference of about 50% at c = 1. The discrepancy 
at c = 1 is due to the fact that the approximation describes only the motion of the tracer 
particle and one vacancy instead of a pair of nearest-neighbour vacancies. 



7646 

6.2. Four-vacancy assisted hopping on the FCC lanice 

A threedimensional analogue of our two-dimensional model is a lattice gas on the FCC lattice 
with four-vacancy assisted diffusion dynamics. The kinetic constraint of this model allows a 
particle to jump to an empty nearest-neighbour site only if the four sites adjacent to the jump 
path are also empty (figure 8). The distance of these sites from the jump path is ( f i /Z)a,  
if a is the nearest-neighbour distance on the FCC lattice. The kinetic constraint again has a 
geometric interpretation. Assume that the particles are hard spheres with diameter d in the 
range ( f i / Z ) a  < d < a, and that the centres of the spheres can move only on the edges 
of the lattice. Then a particle attempting to jump to a nearest-neighbour site cannot pass 
particles occupying the sites adjacent to the jump path. The particle can jump only if all 
four of these sites are empty. Note that the initial position i and the final position f of the 
jumping particle and two of the four sites adjacent to the jump path, 1 and 4 in figure 8, 
say, lie in a (1 11) plane of the FCC lattice, in which the lattice sites fonn a triangular lattice. 
Within this plane the kinetic constraint is the same as for our two-dimensional model. In 
three dimensions two more sites, one above and one below that plane, are required to be 
empty. Therefore the kinetic constraint in the threedimensional model is more restrictive 
than in the two-dimensional one. Consequently, the slowing down of self-diffusion and the 
decrease of the self-diffision coefficient at high particle concentrations will be even more 
rapid than in the two-dimensional case. 

J JiickIe and A Kronig 

Figure S. The kinetic C o m t  for a pmicle to jump from site 1 to site f in the lattice-gas 
model with four-vacancy assisted hopping on the FCC lattice. Sites marked 1-4 must be empty. 

Like particles on a completely filled straight line in the triangular-lattice model, particles 
on a completely filled (1 11) plane in the F c c  lattice model are permanently blocked. In 
fact, it is not necessary for the permanent blocking of particles that all sites in the plane 
are occupied. Several such planes oriented in different directions may form a 'cage' within 
which any mobile particles are trapped. In lattices of finite size a stable cage structure may 
exist Whether a stable cage structure also exists in the thermodynamic limit of infinite 
lattice size is not clear. For the two-dimensional model we ruled out this possibility by 
considering a growth process in the c o m e  of which every particle on the infinite lattice 
performs a jump (section 4). So far we have not found a similar process for the three 
dimensional model. 
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Since the stability of a cage structure in infinite ladices is not known, we discuss the 
consequences of either possibility. If the cage structure is stable, a critical concentration 
c" c 1 must exist, above which a finite fraction of particles is permanently blocked and the 
self-diffusion coefficient is zero. In this case the model would be similar to a lattice gas 
on the simple cubic lattice with four-vacancy assisted hopping, which was studied recently 
by Kob and Andersen [9]. In that model it is required that a particle is always surrounded 
by at least three vacancies on nearest-neighbour sites. For a particle to jump at least two 
vacancies, in addition to the vacancy on the site of destination, must surround the site of 
departure, and at least two vacancies must be nearest neighbours to the site of destination. 
From the analysis of their Monte Carlo results for the selfdiffusion coefficient the authors of 
the model concluded that a dynamical phase transition with critical concentration c* = 0.881 
exists. A similar behaviour may be expected for the constrained FCC lattice gas in the case 
of a stable cage structure. 

If, on the other hand, the cage structure is not stable for infinite lattices, a dynamical 
phase transition probably does not exist. In this case, however, due to the very severe 
reshictions caused by the kinetic constraint at high concentrations, normal diffusion may 
cease to exist in the physical sense, although not in the mathematical one. This second 
possibility is realized by the hard-octahedron lattice gas as discussed in [SI. This is a lattice- 
gas model for the simple cubic lattice in which pairs of particles on nearest-neighbour sites 
are not allowed so that the diffusion of particles is that of hard octahedra. In [8] a proof 
was outlined for the instability of the cage structure in infinite lattices at al l  concentrations. 
(The maximum concentration in this model is c,, = i.) The growth process considered 
in the proof is similar to one used for a bootstrap-percolation problem on the simple cubic 
lattice, for which the characteristic length had been shown to diverge in doubly exponential 
form like exp[aexp(b/(c,, - c))] with a ,  b > 0 [ZZ]. This led to the conjecture that the 
self-diffusion coefficient of the hard-octahedron lattice gas for c + c,, may vanish with 
the same functional form, namely 

W C )  .(ex~[-aexp(~/(c--c))]. (42) 

If a and b are of order unity, as one expects, LIS is zero by all physical standards within 
an extended range of concentration. The same qualitative behaviour of Ds(c) may be 
conjectured for the constrained FCC lattice gas model, if the same case of cage structure 
instability applies. We thus expect the self-diffusion coefficient for the constrained FCC 
lattice gas model to vanish in an extended concentration region in either case, albeit without 
a mathematical singularity in the latter one. 

7. Size effect and eharacteristic length 

7.1. Size dependence of the mean square displacement 

As in the case of the hard-square lattice gas [7], a marked dependence of the mean square 
displacement on the linear dimension I of the lattice is observed for our hiangular-lattice-gas 
model with constrained diffusion dynamics. Figure 9 shows our Monte Carlo results for 
concentration c = 0.7. For 2 c 15 the mean square displacements decrease strongly with 
decreasing lattice size. The curve for 1 = 128 practically coincides with that for an infinite 
lattice. Again as for the hard-square lattice gas the size dependence occurs already at early 
times, where the mean travelling distance is much shorter than the diameter of the lattice. 
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Figure 9. Sire dependence of the mean square displacement against time at concentmion 
c = 0.7 in lattices of size I x I with 1 = 4,6,8, 10, 15,20, 30 and 128 @om the boltom). 

The results shown in figure 9 are obtained for sharp values of the particle number 
density ?I = N/ZZ, which are expressed as the concentration c. Normally, c is the mean 
particle number density, obtained by statistically independent filling of the lattice sites 
with probability c.  If the lattice is populated in this latter way, the size effect is drastically 
different from the above for small lattice sizes. At c = 0.7, a size dependence in the opposite 
sense is observed! This surprising result is due to the fluctuations of the particle number 
density which become relatively large in small lattices. In a smaller lattice, configurations 
with a low particle density may occur, in which the mobility of the particles is strongly 
enhanced. The connibution of particles with fluctuation-enhanced mobility to the mean 
square displacement can be very large, and can outweigh the reduction of the mobility 
due to the smaller lattice size, which is found in configurations near the average density. 
The conclusion is that the size dependence of the mean square displacement typical for 
cooperative diffusion with kinetic constraints may be masked by the effect of particle number 
fluctuations in cases where the characteristic length is small. This fluctuation effect should 
be kept in mind when similar size effects in geometxically wnlined real liquids are looked 
for. 

7.2. Characteristic length 

The observed size effect indicates the existence of a characteristic length. Such a length 
derives from the kinetic constraint for a particle to jump, which in general requires a 
certain (‘cooperative’) rearrangement of neighbouring particles within some distance from 
it. To determine this distance for every particle individually is very time consuming on 
the computer. More efficiently, the probability distribution of such a length is obtained 
by counting the number of particles in a lattice of size I x I with periodic boundary 
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conditions which are permanently blocked. For the hard-square lattice gas this number 
can be determined using a cellular automaton (CA) which at every step removes all mobile 
particles from the lattice. (The final state reached by the CA defines a problem of ‘bootstrap 
percolation’ [20].) It is instructive to analyse the reason why this method works. On the 
square lattice two sublattices which are dual to one another may be distinguished. Since 
only jumps to nearest-neighbour sites occur in the model, a jumping particle always changes 
the sublattice. Through the hard-square repulsion a jump of a particle on one sublattice can 
be forbidden only by the presence of other particles on sites of the same sublattice. This is 
true for the direct blocking of a particle jump by particles on three next-nearest-neighbour 
sites as well as for ‘blocking sequences’, in which blocking particles again are blocked 
by other particles. Therefore, in order to find the particles which are permanently blocked 
on one sublattice, one needs to examine only the occupation of the sites on that same 
sublattice. Since a jumping particle leaves the original sublattice, a mobile particle may be 
removed in the process of searchmg for the permanently blocked particles. This justifies the 
method of using the CA. In addition, it follows that the permanently blocked particles are 
blocked already by the presence of other permanently blocked particles. The permanently 
blocked particles form a rigid cage structure. The other particles, which are only temporarily 
blocked, move around in the voids of this structure. 

After this digression on the hard-square lattice gas we must address the question of 
whether for the triangular-lattice-gas model with two-vacancy assisted hopping the number 
of permanently blocked particles can also be determined by means of a CA. We first observe 
that our triangular-latticegas model does not possess the geometrical properties of the hard- 
square lattice gas which rigorously justify the application of a CA for that purpose. The 
decisive difference is that in the hard-square lattice gas a blocking sequence, in which a 
blocking particle may again be blocked by other particles, contains only particles on one 
sublattice, whereas it may contain particles on the entire lattice in our triangular-lattice- 
gas model. A consequence of this difference is that permanent blocking of a particle may 
be partly or entirely caused by particles which are not themselves permanently blocked. 
Configurations where this occurs may be obtained starting from an ordered structure with 
concentration c = $, in which the hexagonal sublattice of six-membered rings on the 
triangular lattice is completely filled and the dual triangular sublattice of the central sites 
within the rings is completely empty, and placing some particles on the triangular and some 
vacancies on the hexagonal sublattice. The added particles on the triangular sublattice may 
then be permanently blocked by the particles on the hexagonal sublattice, all or part of 
which are only temporarily blocked. An example of such a configuration for lattice size 
6 x 6 (with periodic boundary conditions) is shown in figure 10. Only the two particles on 
the triangular sublattice, which are marked by black squares, are permanently blocked. 

It is not clear how much statistical weight is carried by configurations of this sort. It may 
be conjectured, especially for high concentrations, that this statistical weight is low, and that 
in general most permanently blocked particles are blocked already by the presence of other 
permanently blocked particles. At any rate, this subset of permanently blocked particles, 
which are blocked already by the presence of other permanently blocked particles,t has 
properties similar to the set of permanently blocked particles in the hard-square lattice gas. 
It constitutes a rigid cage structure and may be obtained from the final state of a CA which 
at each step removes a l l  mobile particles h m  the lattice. We calculated the fraction fi of 
particles in this rigid cage structure using this CA for finite lattices of size I x 1. The results 
are shown in figure 11. For each value of I the curves describe the transition with increasing 

T This subset is termed ‘backbone’ in [91 
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Figure 10. Example of particlees (furl squares) on a 6x6 laltice with periodic b0unda.q mnditions 
which are permanently blccked by other panicles which are not themselves permanently blocked. 

c h = l - c  

Figure 11. The fraction of paaicles which are permanenfly blocked by other permanently 
blocked panicles as a function of partide concentration for different linear dimension 1 of the 
lattice. From right to left I = 2, 3, 5,  IO, 20, 100, 512 and 2048. 

particle concentration from states without permanent blocking (3 = 0) to states where all 
particles are permanently blocked (fr = 1). With increasing 1 the transition shifts to higher 
particle concentration and sharpens. For 1 --f CO the transition shifts to c = 1. Similar 
behaviour has also been observed for the hard-square lattice gas 151, and is typical for a 
class of bootstrap-percolation problems [24 231. Quantitatively, the 1-dependent mansition 
concentration cp(l) may be defined by [191 
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Inverting this function yields a concentration-dependent characteristic length lp(c). Results 
are shown in figure 12. For the highest concentrations (0.85 < c < 0.88) the data points 
follow a straight line (dashed) which is described by the formula 

lp(c) = 0.0128 exp (;!:). - 

1 
I - e  

. -  

Figure 12. Characteristic length derived from fraction of permanently blocked particles 
(Fipure 11) via equation (43) as a function of particle concentration. Dashed line is fit by 
equation (44). 

For one concentration (c = 0.7) we also tested our conjecture that the fraction fi of 
permanently blocked particles calculated using the CA may be a good approximation to the 
total fraction fi”& of permanently blocked particles, which includes cases of permanent 
blocking by particles which are only temporarily blocked. was obtained as the long- 
time limit (t- = 3 x IO4 MCS/partiCk) of the fraction of particles which in a Monte Carlo 
run have not moved. For sizes 1 ranging from 8 to 20 very good agreement between fimd 
and fi was found, which supports our conjecture. 

We propose that the characteristic length lp is the relevant length for the observed sue 
effect. This is demonstrated for the concen@ation c = 0.7. From figure 12 we deduce 
a value lp rz 8, which agrees well with the range where the 1 dependence is strongest in 
figure 9. A more detailed test of OUT proposition is given in figure 13. Here the probability 
I-fr that a particle in a lattice of size I x E is nor permanently blocked is plotted together 
with the 1-dependent reduction of the mean square displacement ( ( A ~ ) z ) ~ / ( ( A ~ ) z ) ~  at two 
times r = IO3 and i = lo4. The similarity of the two types of curve shows that the observed 
size effect very strongly correlates with the permanent blocking of particles in small lattices, 
from which the characteristic length lp is derived. 
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0 

I 

Figure 13. Comparison of the pmbability 1 - fi that a particle is not permanently blocked by 
other permanently blocked particles (squares) with the ratio of reduction of the mean square 
displacement in a lanice of sire I x I for I = IO’ (stars) and t = 104 (circles) (c = 0.7). 

8. summary 

Self-diffusion in a lattice-gas model with two-vacancy assisted hopping on the triangular 
lattice has been investigated, by both Monte Carlo simulation and analytical calculation. 
The kinetic constraint requiring two additional vacancies for a particle to jump leads to an 
extremely rapid decrease of self-diffusion coefficient (figure 3) and tracer-correlation factor 
(figure 7), and of the average relaxation rate deduced from the incoherent intermediate 
scattering function (figure 5). at high concentrations. In addition it causes a strong size 
dependence of the mean square displacement at higher concentrations (figure 9), which 
correlates with a characteristic length for the existence of permanently blocked particles in 
lattices of finite size (figure 12). All these properties are signs of pronounced cooperativity 
of the diffusion process at high packing density. Cooperativity of this type is absent in 
a variant of the model with one-vacancy assisted hopping on the same lattice. Here the 
tracer-correlation factor remains finite for c -+ 1, as for the simple lattice gas without 
kinetic constraint. 

The question of whether the model with two-vacancy assisted hopping has a dynamical 
phase transition at a critical concentration lower than one cannot be decided only from the 
Monte Carlo results for the self-diffusion coefficient. We decided against this possibility on 
the basis of a proof that in infinite lattices it is kinetically possible at all concentrations 
smaller than one to make any particle able to jump. The conjectured a ~ y ~ p t o t i c  
concentration dependence of the self-diffusion coefficient for c + 1 is of exponential form 
with an essential singularity at the l i t  c = 1 (equation (4)). This conjecture is supported 
by the concentration dependence of the characteristic length, for which the same functional 
form was found for lengths between 200 and ZOO0 (see figure 10). 
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An analytical calculation of the self-diffusion coefficient was carried out using a pair 
approximation, which is h o w  to be very accurate in the case of the unconstrained simple 
lattice gas. The approximation leads to good agreement with the Monte Carlo results for 
the tracer-correlation factor at the lower concentrations, but fails to reproduce its very rapid 
decrease at the higher concentrations. We have no good analytical approximation scheme for 
the region of pronounced cooperativity. For the variant with one-vacancy assisted hopping, 
on the other hand, the same approximation qualitatively reproduces the Monte Carlo data. 

We also discussed a three-dimensional variant of the model on the pcc lattice with 
four-vacancy assisted hopping. Here the kinetic constraint is even more restrictive than for 
two-vacancy assisted hopping in two dimensions. This model was compared with two other 
three-dimensional models with and without a dynamical phase transition: the lattice gas 
on the simple cubic lattice with four-vacancy assisted hopping [9] and the hard-octahedron 
lattice gas [a]. We argued that the very restrictive kinetic constraint of the FCC lattice-gas 
model will make the self-diffusion coefficient vanish in an extended concentration region in 
any case, either with or without a mathematical singularity at a critical concentration below 
one. 
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